Penny Problem

Solution by Ed Cottrell

Problem: You have 12 pennies, 11 of which are of equal weight and one of which is counterfeit and weighs more or less than all the others. You are given a two-pan balance. Determine in three weighings which coin is different.

Solution:

I need to introduce some notation. The numbers $\{1,2, \ldots 12\}$ represent the coins themselves. The letters $\{A, B, C\}$ represent the weighings. X is the unusual coin. Order is important here (the first stack listed is the "left" stack, and the second is the "right" stack).

STAGE 1

Weigh the stacks $1,2,3,4$ and $5,6,7,8$. Call this weighing A.
Case I. They are even, so X is in $\{9,10,11,12\}$ and $\{1,2, \ldots, 8\}$ consists of good coins. Weigh the stacks $1,2,3$ and $9,10,11$ and call this weighing B.

Case i. They are even again, so X is $\mathbf{1 2}$. Weigh 1 against 12 to determine whether 12 is unusually heavy or unusually light.
Case ii. They are not even, so X is in $\{9,10,11\}$. Weigh 9 against 10 and call this weighing C . If they are even, X is 11. If not, then you know based on B whether X is unusually heavy or unusually light, enabling you to figure out which is X. To be precise, if $B=C, X$ is $\mathbf{1 0}$. If not, X is 9.

Case II. They are different, so X is in $\{1,2, \ldots, 8\}$ and $\{9,10,11,12\}$ consists of good coins. Proceed to Stage 2.

STAGE 2

Weigh the stacks $1,2,5$ and $3,4,6$ and call this weighing B.
Case III. They are even, so X is in $\{7,8\}$. Weigh 1 against 7. If they are even, X is 8 . If not, X is 7 .
Case IV. They are uneven, and $\mathrm{A}=\mathrm{B}$ (the balance tipped the same way). So, X didn't move this time, meaning X is in $\{1,2,6\}$. Switch things up by weighing 1 against 2 (this splits $\{1,2,6\}$ into "left," "right," and "out" piles) and call this weighing C.

Case i. They are even. X is 6 .
Case ii. They are uneven, and $A=B=C$. Thus, X never moved once. The only possibility is $\mathrm{X}=\mathbf{1}$.
Case iii. They are uneven, and $\mathrm{A}=\mathrm{B}=/=\mathrm{C}$. So, X did not move the first time but did the second. $\mathrm{X}=\mathbf{2}$.
Case V. They are uneven and $\mathrm{A}=/=\mathrm{B}$ (the balance reversed). So, X moved, so X is in $\{3,4,5\}$. Weigh 3 against 4 (again, giving you three stacks).

Case i. They are even. X is 5.
Case ii. They are not even, and $\mathrm{A}=/=\mathrm{B}=\mathrm{C}$. So, X moved the first time and not the second. X must be 4 .
Case iii. They are not even, and $\mathrm{A}=/=\mathrm{B}=/=\mathrm{C}$. So, X moved both times. X must be 3 .

There you have it. Breakdown by case:

X	CASE
1	IV. ii.
2	IV. ii.
3	V. iii.
4	V. ii.
5	V.i.
6	IV. i.

X	CASE
7	III (uneven)
8	III (even)
9	I. ii. (uneven)
10	I. ii. (even)
11	I. i. (uneven)
12	I. i. (even)

Note: By considering which way the balance actually tipped, it's possible to determine whether X is heavier or lighter in every case. In the case $\mathrm{X}=12$, we used our third weighing exclusively for this purpose.

